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The existence of a ‘wake’ upstream of an obstacle moving slowly through a 
stratified fluid has been known for some time. The present study shows that a 
thin, flat plate moving slowly and horizontally through a linearly stratified 
salt-water mixture has, in addition, a boundary layer over the plate whose 
thickness increases upstream from the back of the plate. 

The theory assumes that the ratio of diffusivity to viscosity is small, and that 
the plate moves so slowly that inertia forces are negligible; under these condi- 
tions, a similarity solution is derived describing the boundary layer over the 
plate. The study also shows that salt diffusion is important in, a second, thinner 
boundary layer whose thickness increases from the front of the plate. 

In the experiment, a plate was towed khrough a tank of linearly stratified salt 
water. From streak photographs of the boundary layer over the plate, it  was 
possible to confirm quantitatively the similarity solution and to infer at  very 
slow velocities the presence of the thin diffusion boundary layer. 

1. Introduction 
Experimental studies (Long 1955; Yih 1959) show that an obstacle moving 

slowly through a continuously stratified fluid creates an internal disturbance 
which propagates far upstream. This phenomenon is called blocking. 

Blocking, and the analogous Taylor columns in rotating fluids, is the subject 
of much current research and controversy. It seems likely that it does not occur 
when the stratification is sufficiently slight or the motion of the obstacle suffi- 
ciently large (Long 1955). Such supercritical flow resembles potential flow, and 
all disturbances vanish at  moderate distances upstream and downstream. When 
the flow becomes slow enough to permit waves to remain at rest with respect to 
the barrier, experiment and theory indicate that waves appear in the lee 
(figure 1, plate 1) .  In  addition, experiment and theory (Long 1959 ; Trustrum 
1964 ; Bretherton 1967) indicate that disturbances may also propagate upstream 
in the subcritical case; it is not known, however, whether these upstream 
disturbances are present when the obstacle is very small. The time-dependent 
analysis by Trustrum indicates that such upstream disturbances always occur 
in the subcritical case, but the approximations and simplifications of her analysis 
make her conclusion controversial. Very recently Drazin & Moore (1967) have 

t Current address : Department of Meteorology, M.I.T., Cambridge, Massachusetts. 
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derived steady solutions, undisturbed upstream, over obstacles of special form 
and arbitrary size, but these solutions are certainly unstable when the barrier 
is large and will not be realized in experiment. Figure 2 ,  plate 1, is an example of 
blocking in the form of jets over and upstream of the obstacle. 

It seems obvious that viscosity strongly influences flows like that of figure 2 .  
The main purpose of this investigation is to study blocking and the interrelated 
boundary layer over an obstacle at  such very low velocities that viscous effects 
dominate the flow. Long (1959) initiated such studies by discovering a similarity 
solution describing the upstream wake of an obstacle moving through a linearly 
stratified viscous fluid of infinite extent. This solution is discussed briefly in 
52. The present investigation, an extension of Long’s (1959) paper, consists of n 
theoretical and experimental study of the steady motion of a finite flat plate 
through a viscous, stratified fluid. When the plate is moved slowly, a similarity 
solution exists describing a boundary layer over the plate, whose thickness 
increases upstream from the back of the plate. Section 2 contains the derivation 
of the differential equation describing the boundary layer. The same differential 
equation describes Long’s upstream wake. 

The experimental investigation consisted of towing a flat plate through the 
centre of a tank of linearly stratified salt water. Section 3 describes the apparatus 
in detail. Streak photographs, taken from a fixed camera, recorded the velocity 
field. Figure 3, plate 2, shows how to interpret the streak photographs. In the 
frame of the camera, alternate regions of upstream and downstream flow, and 
associated stagnation surfaces, characterize the velocity field over the plate. In  
all photographs of the velocity field, the plate is moving at  a uniform velocity 
from left to right past a fixed camera. 

Figure 4, plate 3, shows streak photographs of the boundary layer over the 
plate. The thickness of the region of backflow, which the two stagnation surfaces 
outline, decreases toward the back of the plate as the one-fourth power of the 
distance from the back. The similarity solution quantitatively describes the 
boundary layer shown in figure 3. 

Section 4 compares the theoretical velocity profile with the experimental data, 
and discusses the effect on the boundary layer of salt diffusion at  low velocities 
and inertia forces a t  high velocities. Section 4 also discusses the observations of 
the upstream and downstream wakes. 

2. Theory 

stratificd fluid: au au ap 
u-4-v- = --+vv2u, 11) ax ay ax 

The following equations describe the steady, two-dimensional motion of a 
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where x is the horizontal co-ordinate, y is the vertical co-ordinate, and u and v 
are the corresponding velocity components. The following expression relates the 
quantity P to the pressure p : 

s- P 
Po Po 

P = - +gy+- p(y)dy.  

The density p is written as p = p,+p(y) +p ' ,  
where po is the mean density, po+p(y) is the undisturbed density distribution, 
and p' is the perturbation density. 

In equations (1)-(4), we have made the Boussinesq approximation (Spiegel 
& Veronis 1960). This is accurate for salt-water solutions provided the density 
variations in the fluid are small. In the experiment, the density of the salt (NaCl) 
solution varied by 1.25% over the depth of the plate from the free surface. It 
can be shown from the empirical Jones-Dole formula (Stokes & Mills 1965) 
that the viscosity coefficient v varies by 2 yo over this density variation, so that 
I, is constant to the order of the accuracy of the Boussinesq approximation. 

On the other hand, the diffusion coefficient D varies by 8% as the density 
varies by 1.25 % (see Harned 1959) so that D is not a constant within the accuracy 
of the Boussinesq approximation. In  this section, however, D will be neglected 
from an order-of-magnitude argument, which is not affected by an error of 8 yo. 
In  the appendix and $4, where D explicitly appears in the analysis, we show for 
the experiment that diffusion only acts on the velocity field in a salt boundary 
layer of maximum thickness 0.3 cm. Over this height, assuming salinity varies 
linearly with height, D varies by 0.2yo (Harned 1959), so that for our purposes, 
we can assume D constant. 

To the order of the accuracy of the Boussinesq approximation, we may write 
the empirical dependence of density on salinity (Harned & Owen 1958) as 

where so is the mean salinity. The salinity s is measured in grams of solute 
per cubic centimetre of solution, and for NaCl in water, e = 0.7203. 

If we cross-differentiate equations (1) and (2), and substitute (4) and (7 )  into 
the resultant equation, then we obtain the following vortieity equation: 

P =Po[l+e(s-so)l> (7)  

For our problem, equations (3) and (8) describe the viscous diffusive motion of a 
stratified fluid. 

If we assume that the undisturbed fluid is linearly stratified and in uniform 
motion, then the following boundary conditions describe flow over a finite flat 
plate (figure 5 )  : 

a t y = O ,  O < x < L  
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(We choose s = - ( k / e )  y so that (l/p,,) I ap/ay I = k.) Upstream and downstream 
of the plate, we have the integral requirement that the momentum flux 

J = s+m[P+u2]dy --m 

is constant (independent of x). 

L x  
FfGURE 5. Co-ordinate system for flow over a finite plate. 

Since equations ( 2 )  and (8) with the boundary conditions (9) and (10) are 
hardly tractable in their present form, we look for possible simplifications. 
In  figures 3 and 4, plates 2 and 3, we see that the horizontal variations of velocity 
are much smaller than the vertical variations, so that we make the familiar 
boundary-layer approsima.tion. If we also assume that the motion is so slow 
that inertia is unimportant,T t,hen (8) and (3) become 

These equations are analogous to the equations describing the slow, viscous 
motion of an obstacle down the axis of a rotating fluid (for example see Herbert 
1965). 

Yih (1959), by neglecting the right-hand sides of equations (1 1) and (12), 
derived the stratified analogy to the Taylor-Proudman theorem. Also, Long 
(1962) derived the stratified analogy to the wakes found by Herbert (1965). 

An important difference between sa,lt-stratified solutions and rotating fluids 
is that the ratio of diffusjvity to viscosity for salt water is 

10-3. 
D 
- 

V 

The small size of this ratio means that we can neglect diffusion in (12), while 
retaining viscosity in (1 1). This approximation has no analogy in the previously 
mentioned rotating system, since the diffusion coefficientt for angular momentum 
is simply v. 

t Janowitz (1967) has investigated the far flow field of an obstacle moving in a strati- 
fied fluid. In his analysis, he approximates the inertia terms by making the Oseen lineariza- 
tion. 
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The neglect of diffusion in (12) gives 

Par from the plate, the boundary conditions (9) give 

+ =  Uoy and s =  -(k/e)y, 

so that the functional dependence of s on $ becomes (Long 1959) 

673 

(13) 

Equation (14) implies that any function satisfying the boundary conditions (9) 
on $ also satisfies the boundary conditions on s. The appendix and $4 show (14) 
to be a very good approximation, except in the immediate vicinity of the plate 
where salt diffusion is important. 

Substitution of (14) into equation ( 1  1)  gives 

where p = gk/Uov. 
Equation (15) is parabolic (Courant & Hilbert 1962, vol. 2, p. 177), with the 

time-like variable x increasing upstream. Non-trivial solutions, then, only exist 
for x positive, so that (15) has no solutions describing a downstream wake. 

Although (15) has no analogy in the equations describing the motion of ob- 
stacles along the axis of a rotating fluid, an identical equation describes slow, 
viscous flow in the meteorological beta-plane (for example see Long 1962). The 
results of this section, then, can be applied to the beta-plane. 

We now discuss two particular similarity solutions of (15) ; one describing an 
upstream wake, the other describing the boundary layer over a flat plate. 

The upstream wake 
When we neglect inertia, the boundary condition (10) on the upstream wake 
becomes 

J = /::Pay 

for x > L. If we assume that far upstream of the plate, the wake is only deter- 
mined by the magnitude of the momentum flux J ,  then equation (15) and condi- 
tion (16) have the following similarity solution : 

$ = UOY + J(Pl@*g(q), (17) 

where 

Long (1959) describes the method of solving for g ( q ) .  Figure 6, in which g’(?j) 
has been arbitrarily set equal to  1 at 7 = 0, shows the resultant horizontal velo- 
city profile. 

43 Fluid Meoh. 31 
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s‘(r) 
FIGURE 6. The horizontal velocity of the upstream wake solution. 

The boundary-layer solution 

We next discuss a similarity solution of (15) describing the Bow over the plate. 
For a semi-infinite plate (0 < x < a), the solution of (15) takes the form 

II. = UO(X/P)” f (S),  (18) 

where 

This solution can be applied to a finite plate by the following argument.? 
Because the time-like variable in (15) increases upstream, the flow over any 
finite section of the semi-infinite plate is unaffected by the flow upstream of the 
section. Therefore, we may truncate the semi-infinite plate to a plate of length L 
without altering the flow over the distance 0 < x < L. The solution (18), then, for 
(0 6 x < L),  describes the flow over both the finite plate and the semi-infinite 
plate. 

Substitution of (18) into (15) gives the following ordinary differential equation : 

4f’V-Tf’ff = 0. (19) 

The boundary conditions (9) become 

Equation (19) with the boundary conditions (20) is easily solved numerically. 

For small 7, the leading terms in the expansion off(2) were found numerically 
Figures 7 and 8 show graphs of the horizontal and vertical velocities. 

to be 
f(7) = 1.15472-0*56473+0(76)+ .... (21) 

t Van Dyke (1964) uses an analogous argument in his discussion of the Blasius solution. 
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For large 7, the asymptotic solution to (19) was found to be 

Seelye Martin and Robert R. Long 

where a = 13/46 1 ,  and B is an undetermined constant. A typical term in the 
expansion of either u or v for large is 

exp { - ia7;I~) cos ($ a?+) , 

so that as 7 goes t o  infinity, the velocity fluctuations fall to zero exponentially 
and oscillate with increasing frequency. 

3. The Experiment The apparatus 

For the experimental study, we towed a flat plate through the middle of a long 
tank of linearly stratified salt water (figure 9, plate 3). The tank dimensions 
were 20 ft. long, 15 in. deep and 6.5 in. wide. A stainless steel track supported 
the flat plate at a height of 6 in. from the bottom of the tank. Three stainless 
steel pillars supported the track; two adjustable machine screws and a ball- 
bearing pivot set into the track served as a bearing surface between the track 
and the pillars. The pillars were mounted on a removable aluminum plate, so 
that we could dismantle and wash the entire apparatus after each experiment. 

The track was 8 ft. long by 6 in. wide. Because of the three-point suspension, 
we could level the track to within& of an inch. The material of the plate was& in. 
hard brass; the plate dimensions were 3 ft. long by 5.5 in. wide. Teflon strips, 
fastened to the edges of the plate, served as bearing surfaces between the plate 
and the steel track. Since the coefficient of sliding friction for Teflon is the same as 
its coefficient of standing friction, the Teflon strips eliminated the problem of 
‘stick-slip’ at  slow velocities. To reduce glare in the streak photographs, the 
plate was painted flat black. 

Piano wire connected the plate to a drum drive. The drum, 2 in. in diameter, 
was driven by a Bodine variable speed motor with a Minarek transmission. 
(For the Bodine-Minarek combination, the shaft speed is virtually independent 
of variations in the applied torque.) A pulley and counterweight system at the 
opposite end of the tank kept the wire taut. 

We measured the velocity field of the fluid with streak photographs (figure 3, 
plate 2). The streak photographs were time exposures of a suspension of fine 
aluminium dust in the fluid, illuminated by an intense plane of light. Two 
cylindrical lenses collimated the output of a Sylvania Sun Gun I1 bulb into a 
plane. The resultant beam was about 0.8 em thick and fanned from a width of 
20 cm at the end of the lens system to 46 em at the plate. A sheet of heat-absorbent 
glass, cooled by a blower, absorbed the infra-red radiation of the bulb. During the 
experiment, a black box covered the lens system, and the light field was centered 
over the plate. 

A black screen placed behind the tank opposite the camera provided contrast 
in the photographs ; a ruler placed in the light field provided scale. The camera, 
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a Graflex using 120 mm film, was tripad-mounted, and was levelled and aligned 
relative to the side of the tank. 

There were a number of steps to filling the tank. To eliminate air bubbles, the 
water used in the experiment was allowed to settle for 48 h in two 55-gaUon 
drums. One of the drums held a salt solution with a density of 1.022 g em-3, 
and the other held fresh water (p  = 0.997 g We prepared solutions of 
densities by mixing the salt and fresh water in different proportions in a third 
container. The contents of the container were then introduced into the tank at 
the bottom. The f i s t  solution to flow into the tank was fresh water ; the density 
of each successive layer was increased by a tenth of the maximum desired density. 
Eleven layers of water of different densities, but equal volumes, filled the tank 
to a depth of 12 in. Filling the tank took about 8 h. 

To obtain a linear density gradient, we gently stirred the layered fluid at  4 ft. 
intervals along the length of the tank. The induced turbulent mixing smoothed 
the steps in the profile. Twelve to 15 h after stirring the fluid, the experiment 
began. During the course of an experiment, we measured the salinity profile 
with a Wheatstone bridge and a conductivity cell. Figure 10 displays a typical 
salinity profile measured at two different times in the course of an experiment. 

The experiment began with the insertion of the plate into the fluid and connex- 
ion of the plate to the tow wire. Next, we injected a suspension of aluminum 
particles in water into the light field with a hypodermic syringe. As soon as the 
associated disturbances disappeared, the drive motor was started. 

The point on the rail where the photographs were taken was 100 em from the 
initial position of the front of the plate. To give the streak photographs of the 
velocity field the same scale for different plate velocities, we set the time ex- 
posure of the camera by the time for the plate to travel between 2-5 and 3 cm. 
The plate velocity and the time exposure were measured with a stop-watch. A 
typical experiment lasted for 9 h and consisted of five different runs. At the 
beginning of the separate runs, we injected aluminum particles into the fluid. 
At the end of an experiment, the entire apparatus was drained, dismantled, 
cleaned, and dried. 

The data analysis 

In the analysis, the photographs of the velocity field were enlarged two times 
actual size. On the photographs, a strong region of back flow characterized the 
velocity field over the plate (figure 3, plate 2). The heights above the plate of the 
two stagnation surfaces separating the region of back flow from the regions of up- 
stream flow correspond to heights in a co-ordinate frame moving with the plate 
where the fluid velocity is equal to the free stream velocity. Rather than measure 
the complete velocity profile, we recorded only the heights of the two stagnation 
surfaces. These heights were then non-dimensionalized and compared with the 
theory. 

We measured the heights of the first and second stagnation surfaces at  5 ern 
intervals along the plate. Since the plate moves past the fixed camera, we defined 
the average distance Z of a reference point on a photograph as the average of the 
distances x of the points of the co-ordinate system of the plate, which pass the 
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reference point on the photograph during the time exposure. The maximum 
absolute error introduced by assuming that x = X was & 1.5 em. From the defini- 
tion of 7 (18), the non-dimensional heights of the first and second stagnation 

0 1 2 3 4 5 6 7 8 9 1 0 1 1  
Depth (in.) 

FI~URE 10. Graph of conductivity versus depth for a typical experiment. T = 23 "C. In 
the experiment, salinity is IinearIy proportional to conduct,ivity to within 0.3 yo. 
0, 12.00 p.m.; x , 4.00 p.m. 

where the subscripts 1s and 2s refer to the first and second stagnation surfaces. 
The theoretical values of yls and y2& axe (from figure 7) 

rls= 1.25 and yzs= 5.00. (24) 

The percentage error of the experimental values of rls and yZs in (23) is easily 
calculated. The error contribution from the assumption that Zi = xi varied from 
7 yo at Z = 5 cm, to 0.5 yo a t  5 = 80 em. For Z 3 20 cm, the error is less than 2 %. 

The reading error of ylson the photographs is _t 0.025 cm, and of yzs, _+ 0.05 cm. 
In the experiment, yls varied between 0.2 and 0.6 em, so that the percentage 
reading error of ylsvaried from 6 to 4%. y,varied between I and 3 cm, so that 
its reading error varied from 5 to 2 y/o. 
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was the value of the 
viscosity at  the level of the plate 7. We calculated7 from the Jones-Dole formula 
(Stokes & Mills 1965), which gave 

The value of the viscosity v used in the calculation of 

F(T = 23 "C, p = 1.010 g = 9.58 x om2 sec-l. 

(The water temperature during the runs varied between 23.0 and 23-4 "C.) 
The viscosity v varied by 2 yo as the salinity varied from zero at  the free surface 

to its value at the depth (15 cm) of the plate ; over the depth of the boundary 
layer, v varied by approximately 0.4%. Thus 74 contributed an error of 0.1 % 
to 'I. 

We calculated the density gradient k used in (23) by fitting a straight line to a 
plot of conductivity versus depth (figure 10). The accuracy of the fit was about 
5 yo, so that ki contributed an error of 1 % to 7. 

The percentage reading error of the velocity U, was less than 0-1 %. 
Summation of all contributions to the reading error of (23) determined the 

accuracy of qls and vZs The minimum reading error was 6 and 4%, respecbiveIy. 

4. Comparison of theory with experiment 
The boundary layer 

Before comparing the measured values of yls and qZs with the theory, let us first 
establish the range of validity of the similarity solution. Substitution of the 
similarity solution into the equations of motion shows that the ratio of the 
largest neglected term (the inertia term) to  the retained viscous term is 

It is therefore convenient to define an inertia length scale xi such that 

_ -  1 
10' 

u! 
(vkg)ix% - -- 

Inertia forces should be negligible? and the similarity solution should describe 
the flow for 

or away from the back of the plate. 
Derivation of an analogous diffusion length scale is more complicated ; the 

details are given in the appendix. We see there that salt diffusion acts in a boun- 
dary layer growing from the front of the plate. Since the thickness of the non- 
diffusive boundary layer increases from the back of the plate, there will be a 
point over the plate where the salt boundary layer thickness is non-negligible 
compared with the non-diffusive thickness. At slow enough velocities, then, the 
effects of salt diffusion should be visible in the experiment near the back of the 
plate. We find that we may define a diffusion length xdl by the equation 

x > xi, (27) 

t Other neglected terms are still smaller provided U,,xi/v > 1. This condition is satis- 
fied for the experiments. 
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where L is the length of the plate and A = 1.154. We may neglect diffusion in our 
problem provided 

x > Xdl.  (29) 

From (27) and (29), both inertia and diffusion are important near the back of the 
plate. Of course, the length scales are only order-of-magnitude estimates of the 
distances over which diffusion and inertia affect the flow. 

Using a plate of length L = 91-5 cm, we performed five different experimental 
runs covering the range of validity of the similarity solution. Table 1 in the text 
summarizes the parameters of the five runs and lists Uoxi/v, xi and xdl. The table 
suggests that diffusion effects should be visible in the first two runs; inertia 
effects, in the last two. 

uo 
(em sec-l 

x 10-2) 

2-85 
5.24 
8.41 

11.25 
14.5 

Water 
temp. 

("C) 
23.0 
23.4 
23.4 
23-4 
23.4 

Density 
gradient u, Xi xi X d l  

(em-1 x lo4) V (cm) (cm) 
8.33 0.9 0.3 70 
8.33 10 1.9 4 
8.61 67 7 10-1 
8.61 211 18 10-e 
8.61 575 38 1 0 4  

TABLE 1. Parameters of the experimental runs 

Before describing the effects of diffusion and inertia in the experiment, let; us 
point out for the five runs that the similarity solution only describes the ex- 
perimental flow to a height of g = 5. Comparison of the theoretical vertical 
velocity profile (figure 8) with the experimental photographs shows that above 
the second stagnation surfaoe (g  = 5), the theoretical vertical velocity is positive, 
whereas the observed vertical velocity is negative. Also, the velocity oscillations 
predicted by the asymptotic solution (22) for large g do not appear; instead we 
observed above the second stagnation surface a wide region of upstream flow, 
whose height does not decrease toward the back of the plate. It can be shown 
from the asymptotic solution that the inertia terms cause the deviation from the 
similarity solution for large values of g. Since g = 5 is the height of the second 
stagnation surface, it is convenient experimentally to take the thickness of the 
non-diffusive boundary layer to be 

We now discuss the quantitative behaviour of the experimental velocity 
field. Table 1 predicts that the best agreement between theory and experiment 
will occur for 8.4 x cm sec-l. Figure 11 shows that g,, and 7% in this case 
agree with theory to within 4 % for 10 cm < Z < 80 cm. In its region of validity, 
the similarity solution predicts the correct value of g,, and gzs. 

At slower velocities, table 1 suggests that diffusion affects the velocity profile. 
For 5.24 x cm sec-l and 2.85 x cm sec-l, figure 11 shows that the 
values of ?I,, and gzsdeviate from the predicted values near the back of the plate, 
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and that the largest deviations occur for the slowest velocities. At the slowest 
velocity, 2.85 x cm sec-l, evaluation at  the back of the plate of the thick- 
ness 8, (defined in the appendix) of the region of the velocity perturbation caused 
by diffusion gives 8, = 0.34 cm. 

For 2.85 x cm sec-l, figure 12 shows that the height of the fist stagnation 
surface qls decreases with X from Z = 80 ern to Z = 15 cm, then increases to 
0.4 cm, or of order a,, at Z = 5 om. yls achieves its largest value at  I 5  = cm for 
the slowest velocity of the five runs. This behaviour of ylsfor the slowest velocity 
may be the direct result of the salt boundary layer growing downstream beneath 
the non-diffusive boundary layer. 

70 80 
- 
x (em) 

FIGURE 11. Non-dimensional heights of the stagnation surfaces versus distance from the 
back of the plate for the three slow runs. A, 2.8 x 10-2 cm see-l; 0, 5-2 x ern see-1; 
x , 8.4 x em see-l. 

In  summary, our analysis predicts when salt diffusion will affect the non- 
diffusive boundary layer, but not how. Hopefully, by carrying our analysis 
much farther, we will be able to explain quantitatively the interaction between 
the non-diffusive boundary layer and the salt boundary layer. 

Let us now discuss the effect of inertia on the solution. For the two higher 
velocities, table 1 shows that the effect of diffusion is negligible and that inertia 
is important near the back of the plate. Figure 13, which displays qls and yZs 
for the two higher velocities, shows that; except for 1.125 x 10-1 cm sec-l and 
53 3 70 cm, the experimental values of qls fall below the predicted value of 
yls = 1-25 by 12 to 25 %, or well outside of the allowed reading error. The inertia 
length scale, then, which for 1.125 x 10-1 ern see-1 predicts agreement for ii! 3 
18 cm, gives only an order-of-magnitude estimate of the distance over which 
inertia affects the flow. 
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The wakes 

A quantitative attempt to verify the similarity solution describing the upstream 
wake failed. The observed flow (figure 4a and 14, plates 3 and 4) has a qualitative 
resemblance to the theoretical profile. Because the solution is independent of 

1.0 

0 8  

0 6  

2 
0 
Y ’ 04 

0 2  

0 10 20 30 40 50 60 70 80 

Z(cm) 

FIGURE 12. Height of the first stagnation surface versus distance from the back of the 
plate. +, 1.45 x 10-1 cm sec-l; 0 ,  1.12 x 10-1 cm sec-l; x ,  8.41 x cm sec-l; 
0, 5.24 x cm sec-l; A ,  2.85 x cm sec-l. 

5 

4 

713 

2 

1 

0 10 20 30 40 50 60 70 80 

2 (cm) 

FIUURE 13. Non-dimensional heights of the stagnation surfaces versus distance from the 
back of the plate for the two faster runs. 0 ,  1.125 x 10-1 cm sec-1; + , 1.450 x 10-1 em sec-l. 
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the shape of the obstacle which creates the disturbance, we only accept the 
solution to describe the flow far upstream of the plate. The short track, however, 
did not seem to  provide enough travel time for the wake to become fully developed 
as the shear layers weakened and died out 30 to 50 em upstream of a plate of 
15 om length, after the plate had travelled 100 cm. A longer track might well 
lead to a quantitative confirmation of the similarity solution describing the 
upstream wake.? 

For the range of velocities over which the similarity solution describes the 
non-diffusive boundary layer and the observed upstream wake has an oscillatory 
profile in the vertical, the observed downstream wake has a simple velocity 
defect (figure 4b ,  plate 3). If we are far enough downstream of the plate so that 
we are in the region of the diffusive wake discussed by Long (1962), then the 
downstream wake should develop oscillations in the vertical ; however, a 3 min 
time exposure taken 40 em downstream of a 15 cm plate moving at 2.85 x 10-2 cm 
sec-l and for k = 8-6 x em-l still showed a simple velocity defect. Oscilla- 
tory wake profiles have been observed both upstream and downstream of an 
obstacle moving down the axis of a rotating fluid (T. Maxworthy 1966, personal 
communication) ; this case is mathematically analogous to Long’s diffusive solu- 
tion (see Childress 1964; or Herbert 1965). Janowitz (1967) has found solutions 
for the non-diffusive downstream wake, but at the present time, these have not 
been confirmed by experiment. 

The effects of higher velocities 
The boundary-layer thickness continues to increase from the back of the plate 
at  higher velocities. Figure 15, plate 5, shows the back of the plate 91-5 ern long, 

Vo = 4.0 x 10-1 cm seo-l, k = 8.61 x 10-4 cm-l and xi = 810 cm. 

Although the similarity solution does not describe the boundary-layer profile, 
the boundary-layer thickness still increases from the back of the plate. Above 
the second stagnation surface, shear layers growing from the back of the plate, 
characterize the flow. The dying-out of the shear layers upstream indicates that 
the flow is time-dependent, so that we made no quantitative measurements at  
higher velocities. 

Since the entire depth of fluid above the plate is excited, a relevant parameter 
for describing the motion of the fluid in figure 15 is the internal Froude number 
3’ based on the depth of the plate from the free surface ( H  = 15.4 cm). For 
U, = 4.0 x 10-1 cm sec-l; F = Uo/(kgH2)* = 2.84 x Downstream of the 
long plate at this Froude number, we observed internal waves, which are not 
shown because of the low quality of the photographs. Qualitatively, however, 
they resembled those shown in figure 16, plate 6), which is a composite photo- 
graph of the flow of a plate 0.63 em long moving at  approximately the same 
Froude number, or F = 2.88 x 

The plate in figure 16 has moved a distance of 2.8 cm past the camera during 
the time exposure, so that the swirls downstream of the plate would look like 

Y .  H. Pao (1966, private communication) claims to  have verified the upstream wake 
experimentally. 
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waves in a co-ordinate system attached to the plate. The qualitative resemblance 
between figures 15 and 16 is evidence that P is important in determining the 
flow at higher velocities. 

The flows in figures 15 and 16 have the following properties : the shear layers 
above and ahead of the plate alternate in direction and grow from the back of the 
plate ; the magnitude of the velocity fluctuations away from the plate is much 
less than the plate velocity ; and in figure 16, the magnitude of the upstream jets 
is of the same order as the magnitude of the downstream waves. 

We finally attempted to determine the velocity at  which the boundary layer 
begins to grow downstream. The fastest experiment was for U, = 1.9 cm sec-1, 
L = 91.5 cm, E = 2.67 x cm-l; or P = 7.7 x The boundary-layer 
thickness still increased from the back of the plate. We were not able to move 
the plate fast enough to observe a boundary layer which grew downstream. 

The authors wish to  acknowledge the help of Mr Edward Bertic, Mr Michael 
Karweit and Mr Frank Troska in the building and carrying out of the experi- 
ment. This investigation was supported by the Office of Navel Research under 
Task Order no. NR-082-104, Contract no. Nonr-4010(01) and by Environmental 
Science Service Administration under Grant no. E-9-67(G). 

Appendix. The salt boundary layer 

used in Q 2 as follows : 
To derive the form of the salt boundary layer, we scale the dimensional variable 

where 

and the primes denote non-dimensional variables. 

from the variables gives 
Substitution of (A 1) into equations (11) and (12) and dropping the primes 

a451r as 
ay4 ax’ (A21 __ - - - 

where 

Evaluation of (A3) at  y = 0 over the plate gives the following boundary 

a2s _ -  - 0  at  y = O .  
aY2 

condition : 

(A41 

On the other hand, evaluation of the non-diffusive salinity field (from equation 
(14)) at y = 0 gives 
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The numerical constant in (A5) comes from (20). Since x is of order 1 in (A5), 
the second derivative of the non-diffusive salinity field is at least of order 1 at 
the plate, so that condition (A4) cannot be satisfied by the non-diffusive salinity 
field. Retention of diffusion in the problem, then, creates a region of non-uni- 
formity at  the plate. 

We may eliminate the region of non-uniformity through use of the following 
asymptotic expansions of s and $ and by stretching y as follows: 

s = a3Ab+-ss,+ a 2  ...., 
A 

Y = (a /A)+YdJ  J 
where A = 1.154. 

scripted variables are of order 1 in the region where diffusion is important. 

the following boundary conditions on $i and s1 : 

For future convenience, we also set x = 1 - 4 .  We assume that all of the sub- 

By applying the matching procedure described in Van Dyke (1964), we derive 

at  yd = 00, 

- = -  
a& 

and at  yd = 0, 

In (A?), we use the expansion off(?) for small 7 given by equation (21). 
Substitution of (A6) into equation (A2) gives 

To order a%, a4$1/ay4d = 0, so that a solution of (A8) satisfying the boundary 
conditions on $1 is 

Equation (A9) is simply the first term in the expansion of the non-diffusive 
stream function for small 7. To order a*, then, the stream function in the salt 
boundary layer is the non-diffusive stream function. In  the experiment, the 
maximum value of a was 0.26, which corresponds to a* = 0.17. 

$i = y i p  -x&k (A 9) 

Substitution of (A 9) into the diffusion equation gives 

Gevrey (1913, chapter 2 ) ,  shows that (A 10) is a parabolic equation with the time- 
like variable x, increasing from the front of the plate, so that the salt boundary 
layer should grow from the front of the plate. Since the non-diffusive boundary 
layer grows from the back of the plate, our analysis is only correct away from 
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the back of the plate, or where the salt boundary-layer thickness is much less 
than the non-diffusive boundary-layer thickness. 

We may find the form of the solution to equation (A10) and the boundary 
conditions (A7) in the following way. Expansion of (1 -x&, (1  -xa)-l and 
(1  - xd)-i around xd = 0 in (A7) and (A 10) gives 

Equations (A 11) and (A 12) have the following solution: 

co 

S I ( X ~ , Y ~ )  = x i  c x$sn(C), 
n= 0 

where C = YalXi. 

Substitution of (A13) into ( A l l )  and (A10) gives to order xd a two-point 
boundary value problem for so(C). 

at C = 0, 

and as [+a, 

The derivation of equations which describe sl(C), s2(C),.. . is equally straight- 
forward. 

Without solving (A 14), we can now obtain an order-of-magnitude estimate 
of the velocities at  which diffusion will affect the non-diffusive boundary layer. 
The form of the solution (A 13) suggests that the salt boundary-layer thickness 
increases from the front of the plate as xi. In  dimensional variables, then, the 
thickness 6,(x) of the salinity perturbation created by diffusion increases as 

sac) = 0 ,  

sb(5) = - 1. 

As we show in $4, the thickness of the non-diffusive boundary layer increases 
as 

If we assume that the scale factor 5 also appears in (A 15), then 
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In the experiment, however, we measure the u-velocity field, not the salinity 
field. From the scaling (As) ,  the magnitude of the diffusive contribution to the 
u-velocity field is of order 

or an order a smaller than the diffusive salinity field. Therefore, we assume that 
the thickness 6 , ( x )  of the u-velocity perturbation created by diffusion is an 
order CI smaller than c$(z), so that 

6,(x) = aS,(x). (A 18) 

.- 
L X  

FIGURE 17. Sketch of a&) and &(x) for the flow of a stratified 

B 
UO 

diffusive fluid over a flat plate. 

To derive a diffusion length scale, we assume that (A17) and (Al8) give the 
correct order-of-magnitude of 6,(x) over the entire length of the plate. We also 
assume that the effect of diffusion on the u-velocity profile will be visible in the 
experiment when 

6,(x) 3 &6(x) (figure 17). 

We define the diffusion length scale xdl as that distance for which 

S,(x,,) = +G&%l), 

or from (A 15) to (A 18), 

The effects of diffusion should be negligible in the experiment for x 3 xdl. 
(We calculated the value of D used in (A19) from measurements of D at T = 

25 "C (Stokes 1950). We extrapolated his result to T = 23 "C using the Nerst- 
Einstein equation (Jost 1960) and obtained 

D ( T  = 23 "C, p = 1.010 g = 1.40 x em2 sec-l 

as the mean diffusivity of our experimental solution.) 
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Plate 2 

FIGURE 3 (a) .  Streak photograph of velocity field. Plate is moving from left to right past a 
stationary camera. ( b )  Sketch of vclocit>y ficld of (a)  in a co-ordinate system attachcd to 
the camera. ( c )  Sketch of velocity field of (a )  in a co-ordinate system attached to the 
plate. 
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A 
FIGURE 4. The boundary layer over the plate. St>reak photographs of a plate 91.5 cm 
long, moving with a velocity of 7.5  x 10F em sec-l from left t.0 right past a fixed camera. 
The constant density gradient is ( l/po) lap/2yI = 8.4 x cm-l and the time exposure is 
30 sec. The arrows mark the mean position of the front and the hack of the plate. ( a )  
Front of t,hc plate. ( b )  Back of the plate. 

FIGURE 9. The apparatus. 

MARTIN AND LONG 
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A 

FIGIJXE 14. Thc upstream walrc. Arrow is 25 ern upstream of the front of a plate 15 cm 
long. Camera, is stationary; platr is inoving from left to  right. U ,  = 1.45 10-l cin scc-l; 
X. = 8.6 10P em-'. 
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A 
FICIJRM 1.3. Flow field ovrr the back of thc platc 91.6 em long for F = 2.84 10F. Plate is 
inoving from right to lrft past stationary camera. Arrom marks mcan position of thr 
kmck of thc platc. 
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FIGITRE 16.  T’clocity ficld of plate 0.63.5 ern long for P = 2.88 x 1 0 F  Phte inovw from left 
to  right past thc stationary camera. Arrow marks mean position of the centrc of thc plate. 
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